Translate this page:
Please select your language to translate the article


You can just close the window to don't translate
Library
Your profile

Back to contents

Space Research
Reference:

Lin' M., Chzhao S., Tszy S., Go P., Fan' Ts. Klassifikatsiya programmnogo obespecheniya po obrabotke dannykh meteorologicheskikh sputnikov

Keywords:

Sputnik, Nazemnaya prikladnaya sistema, Klassifikatsiya, Ierarkhicheskaya klasterizatsiya, Verifikatsiya programmnoi modeli, Parametry prilozheniya, Zagruzka pamyati, Zagruzka vvoda-vyvoda, Zagruzka seti


This article can be downloaded freely in PDF format for reading. Download article


References
1. Thüm, T., Apel, S., Schaefer, I., et al. (2014) A Classification and Survey of Analysis Strategies for Software Product Lines. ACM Computing Surveys, 47, 1-45. URL: https://doi.org/10.1145/2580950
2. Gómez, O.S., Juristo, N. and Vegas, S. (2014) Understanding Replication of Experiments in Software Engineering: A Classification. Information & Software Technology, 56, 1033-1048. URL: https://doi.org/10.1016/j.infsof.2014.04.004
3. Gabmeyer, S., Kaufmann, P. and Seidl, M. (2013) A Classification of Model Checking-Based Verification Approaches for Software Models. Proceedings of the STAF Workshop on Verification of Model Transformations (VOLT 2013), Budapest, 17 June 2013, 1-7.
4. Srinivas, C., Radhakrishna, V. and Rao, C.V.G. (2014) Clustering and Classification of Software Component for Efficient Component Retrieval and Building Component Reuse Libraries. Procedia Computer Science, 31, 1044-1050. URL: https://doi.org/10.1016/j.procs.2014.05.358
5. Rashwan, A. and Ormandjieva, O. (2013) Ontology-Based Classification of Non-Functional Requirements in Software Specifications: A New Corpus and SVM-Based Classifier. IEEE, Computer Software and Applications Conference. IEEE Computer Society, Kyoto, 22-26 July 2013, 381-386. URL: https://doi.org/10.1109/COMPSAC.2013.64
6. Pancerz, K. (2015) On Selected Functionality of the Classification and Prediction Software System (CLAPSS). International Conference on Information and Digital Technologies, IEEE, Zilina, 7-9 July 2015, 278-285. URL: https://doi.org/10.1109/DT.2015.7222984
7. Wahono, R.S., Herman, N.S. and Ahmad, S. (2014) A Comparison Framework of Classification Models for Software Defect Prediction. Advanced Science Letters, 20, 1945-1950. URL: https://doi.org/10.1166/asl.2014.5640
8. Naufal, M.F. and Rochimah, S. (2016) Software Complexity Metric-Based Defect Classification Using FARM with Preprocessing Step CFS and SMOTE a Preliminary Study. International Conference on Information Technology Systems and Innovation. IEEE, Al Ain, 28 November 2016, 1-6.
(9.} Peng, J., Elias, J.E., Thoreen, C.C., et al. (2003) Evaluation of Multidimensional Chromatography Coupled with Tandem Mass Spectrometry (LC/LC-MS/MS) for Large-Scale Protein Analysis: The Yeast Proteome. Journal of Proteome Research, 2, 43-50. URL: https://doi.org/10.1021/pr025556v