Translate this page:
Please select your language to translate the article


You can just close the window to don't translate
Library
Your profile

Back to contents

Software systems and computational methods
Reference:

Korobeynikov A.G., Markina G.L., Aleksanin S.A., Akhapkina I.B., Bezruk N.V., Demina E.A., Yamshchikova N.V. Using the MAPLE system of computer algebra in studying the generation of systems of the ordinary differential equations

Abstract: Nowadays the teachers while lecturing various courses on the ordinary differential equations often use program systems of symbolical mathematics or computer algebra, for example MAPLE well known for its efficiency. In the process of training in computer modeling, teacher often face a problem of designing a mathematical model of the studied process. Because the fundamental laws of nature are formulated as a rule in a language of the differential equations, there is a need to teach the students to design mathematical models. The authors present a solution of the problem of the automated generation of mathematical models on the using a systems of the ordinary differential equations based on Maple system. The paper presents an example of this solution. The given algorithm of generating systems of ordinary differential equations can be easily modified for a specific task. During the course on ordinary differential equations it is necessary to give students the tasks develop the algorithm by themselves. This allows students to develop a culture of logical thinking, which will properly establish cause and effect of physical processes and phenomena from the formal implementation of interdisciplinary connections and practical orientation of training. All of this will undoubtedly contribute to a better knowledge of the disciplines of applied mathematics and other subject areas.


Keywords:

Generation of differential equations, Logistic system, educational process, mathematical model, ordinary differential equations, digraph, MAPLE, Transport task, Decision methods


This article can be downloaded freely in PDF format for reading. Download article


References
1. Korobeynikov A.G., Akhapkina I.B., Bezruk N.V., Demina E.A., Yamshchikova N.V. Primenenie sistemy komp'yuternoy algebry Maple v obuchenii proektirovaniyu i analizu mnogomernykh matematicheskikh modeley//Informatika i obrazovanie.-Moskva: OOO "Obrazovanie i informatika", 2014.-Vyp. 253.-№ 4.-ITK v predmetnoy oblasti.-S. 69-75.-ISSN 0234-0453.
2. Korobeynikov A.G., Grishentsev A.Yu. Razrabotka i issledovanie mnogomernykh mate-maticheskikh modeley s ispol'zovaniem sistem komp'yuternoy algebry// SPbNIU ITMO.-Sankt-Peterburg: SPbNIU ITMO, 2013.-100 s.
3. Korobeynikov A.G. Matematicheskoe modelirovanie. Proektirovanie i analiz mnogo-mernykh matematicheskikh modeley s primeneniem sistem komp'yuternoy algebry// LAP LAMBERT Academic Publishing-2014.-125 s.-ISBN 978-3-659-16593-1.
4. Korobeynikov A.G. Razrabotka i analiz matematicheskikh modeley s ispol'zovaniem MATLAB i MAPLE. Uchebnoe posobie. – SPb: SPbGU ITMO, 2010. – 144 s.
5. Bogatyrev V.A., Bogatyrev A.V. Funktsional'naya nadezhnost' sistem real'nogo vre-meni//Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki. 2013. № 4. S. 150-151.
6. Korobeynikov A.G., Grishentsev A.Yu. Uvelichenie skorosti skhodimosti metoda konechnykh raznostey na osnove ispol'zovaniya promezhutochnogo resheniya // Kibernetika i programmirovanie. - 2012. - 2. - C. 38 - 46. URL: http://www.e-notabene.ru/kp/article_13864.html