Galkin A.F., Zhirkov A.F., Pankov V.Y., Plotnikov N.A. —
Analysis of the results of studies of the thermal regime of natural and man-made kurums of the cryolithozone
// Arctic and Antarctica. – 2024. – ¹ 4.
– P. 1 - 12.
DOI: 10.7256/2453-8922.2024.4.71939
URL: https://en.e-notabene.ru/arctic/article_71939.html
Read the article
Abstract: The subject of research is natural and man-made kurums (blocky accumulations of rocks). The purpose of the work was to analyze the main literary sources, in which the results of research on the formation of the thermal regime of rock dumps (kurums) were published. The retrospective period of the research extends for more than 50 years. Domestic and foreign sources of information are considered. The most representative ones have been selected for analysis, in which the results of research with theoretical value and practical significance have been published. The analysis showed that on many important aspects of the formation of the thermal regime of natural and man-made kurums, all the authors of studies conducted in different regions and at different time periods, independently of each other, came to the same conclusions. This indicates the reliability and objectivity of the results obtained. An analytical review of scientific articles was used as a research method, in which research materials on the formation of the thermal regime of both the kurums themselves and their soil bases were published. The kurums of the permafrost and island permafrost zones are considered. An analytical review of literary sources containing theoretical and practical results of research on the formation of the thermal regime of natural and man-made kurums is carried out. The results of the analysis allow us to draw the following main conclusions. 1. Any types of natural and man-made kurums lead to progressive cooling of the base on which they are located. 2. When interacting with the rock base, the technogenic kurum works as an active thermal protection, changing its thermal resistance during the annual cycle. 3. When modeling the process of thermal interaction of technogenic kurum, it is quite acceptable to consider the kurum as a heat-protective layer, the thermal resistance of which depends on the effective coefficient of thermal conductivity, which changes its value when the sign of atmospheric air temperature changes. Based on the analysis of the results of the published works, conclusions are drawn about the possibility of a number of simplifications in the construction of computational models for forecasting and controlling the thermal regime of frozen bases of technogenic kurums.
Galkin A.F., ZHirkov A.F., Pankov V.Y., Plotnikov N.A. —
The depth of the thermal influence zone of the surface in the snow cover
// Arctic and Antarctica. – 2024. – ¹ 4.
– P. 129 - 141.
DOI: 10.7256/2453-8922.2024.4.72541
URL: https://en.e-notabene.ru/arctic/article_72541.html
Read the article
Abstract: The subject of the study is the snow cover, which determines the formation of the thermal regime of soils in winter. The purpose of the work is to determine the depth of the zone of thermal influence of the surface in the snow cover. That is, the determination of the zone of temperature fluctuations (daily, decadal) in the snow cover when the temperature of the atmospheric air changes. Determining the depth of this zone is important both for taking into account the formation of the properties of the snow cover itself, and for choosing a method for modeling the process of thermal interaction of the atmosphere with the ground in the presence of snow cover. In particular, the possibility of taking into account snow cover as thermal resistance in modeling thermal processes. To assess the depth of thermal influence, the well-known Goodman formula was used, obtained by solving the corresponding problem of thermal conductivity by the integral method and representing the dependence of the depth of the zone of temperature change in a solid with an abrupt change in surface temperature on time and thermal conductivity of the material (in this case, snow of a certain density). To determine the thermal conductivity, the formulas of Abels and Osokin were used to determine the thermal conductivity coefficient of snow depending on density. At the same time, it was taken into account that the density of snow cover is a variable in depth, determined by the linearized Abe formula. Alternatively, a snow cover with a density equal to the average integral density in depth is considered. Dependences are obtained to determine the duration of the attenuation period of surface temperature fluctuations at a certain depth of snow cover. An indicator of the change in the depth of vibration attenuation (the depth of thermal influence) is proposed. To assess the effect of snow reclamation, a formula is proposed that allows us to determine the degree of change in the duration of the period of complete attenuation of temperature in depth during compaction of snow cover, depending on the compaction coefficient. A dependence has been obtained linking the depth of the zone of thermal influence with the duration of the period of daily temperature fluctuations on the surface of the snow cover and its density. Comparison of the calculated data according to the obtained formulas with the data on the depth of attenuation of daily temperature fluctuations in snow cover with different snow densities, given in the literature, showed good convergence. This allows us to recommend the obtained formulas for practical use in assessing the process of formation of the thermal regime of snow cover.