Galkin A., Pankov V.Y., Fedorov Y.V. —
The radius of thermal influence of the chambers of underground structures of the cryolithozone
// Arctic and Antarctica. – 2023. – ¹ 4.
– P. 1 - 8.
DOI: 10.7256/2453-8922.2023.4.69178
URL: https://en.e-notabene.ru/arctic/article_69178.html
Read the article
Abstract: The subject of research is the underground structures of the cryolithozone (permafrost zones). The design of such structures, in particular the choice of space-planning solutions, methods and means of fastening rocks, unlike structures located not in frozen rocks, has a number of features and is associated with the need to take into account the zone of thermal influence of chambers operated with different thermal conditions constantly or periodically. For example, when changing the type of thermal regime in the chambers in cases of natural or man-made accidents and catastrophes. The purpose of the research was to determine the zone of thermal influence of a single chamber of an underground cryolithozone structure, depending on the type of fastening used (in the presence and absence of a thermal protective layer) and the duration of the operational period, using various calculation formulas. To achieve this goal, three types of formulas were studied that determine the dependence of the dimensionless radius of thermal influence of chambers on Fourier and Bio criteria. Multivariate calculations were performed using the formulas, which are presented in the form of 3D graphs. The analysis of the performed calculations showed that the calculations for all three formulas give similar results in a fairly wide range of changes in the initial parameters. Moreover, the formula, which does not take into account the influence of the Bio number on the radius of thermal influence, gives a certain calculated margin. In general, it is shown that the higher the value of the Bio number, the less its effect on the depth of the thermal influence zone of the underground chamber. Small values of the Bio number (up to 5-6) are typical for cameras that are fixed with sprayed concrete or have special heat-protective coatings.It is established that when choosing space-planning solutions for underground structures to assess the influence of the thermal factor, it is quite acceptable to use an approximate formula to estimate the radius of the thermal influence of a single chamber. The scientific novelty lies in establishing the scope of the studied formulas for predicting the radius of the zone of thermal influence of cameras with various types of fastening and thermal protection.
Galkin A., Pankov V.Y., Fedorov Y.V. —
Temperature Change in the Chambers of Underground Structures when operating Diesel Units
// Security Issues. – 2022. – ¹ 4.
– P. 27 - 33.
DOI: 10.25136/2409-7543.2022.4.38938
URL: https://en.e-notabene.ru/nb/article_38938.html
Read the article
Abstract: The thermal regime of underground cryolithozone structures for various purposes, both related and not related to mining production, is an important factor determining their reliable and safe operation. In this regard, the forecast of the thermal regime in mine workings is a mandatory and important element in the justification of design solutions for the construction and reconstruction of underground structures in the areas of distribution of continuous and island permafrost. One of the main sources of heat generation in the workings is the work of diesel equipment, which is widely used, both in the development of mineral deposits by the underground method, and to ensure technological processes in underground structures of non-mining profile. The purpose of the research was to quantitatively assess the effect of diesel installations on the thermal regime in the underground structures of the cryolithozone. The results of numerical calculations are presented in the form of 2D and 3D graphs, which allow you to visually assess the effect of diesel equipment on the increment of air temperature in the underground structure, depending on the time of year and the efficiency of the diesel installation. It is shown, in particular, that in the most probable range of changes in the efficiency of a diesel installation, the air temperature can vary from 3.2 to 6.3 °C, depending on the standard values of the ventilation air flow. It is established that the temperature increment does not depend on the number of simultaneously operating diesel units and is determined only by the specific standard air flow (m3 / s per 1 kW of installation power).