Filippova K.A., Ayusheev T.V., Damdinova T.T., Tsidipov T.T. —
Investigation of the stress–strain state of a composite blade in ANSYS WorkBench
// Software systems and computational methods. – 2024. – ¹ 2.
– P. 41 - 52.
DOI: 10.7256/2454-0714.2024.2.70712
URL: https://en.e-notabene.ru/itmag/article_70712.html
Read the article
Abstract: In this paper, the static strength of a UAV blade made of composite material was calculated. Composite materials have an advantage over traditional materials (metals and alloys) in the field of aviation – gain in weight, low sensitivity to damage, high rigidity, high mechanical characteristics. At the same time, the identification of vulnerabilities in a layered structure is a difficult task and in practice is solved with the help of destructive control. Composite materials available in the ANSYS materials library were used in the modeling: Epoxy Carbon Woven (230 Gpa) Prepreg woven carbon fiber in the form of a semi–finished prepreg impregnated with epoxy resin carbon fiber with Young's modulus E=230 GPa and Epoxy Carbon (230 Gpa) Prepreg is a unidirectional carbon fiber prepreg impregnated with epoxy resin with a Young's modulus E=230 GPa. Modern software products, such as ANSYS WorkBench, allow comprehensive investigation of the layered structure. Several variants of blade designs with different fillers as the median material were investigated. The forward and reverse destruction criteria based on the Tsai-Hill theory were used. The influence of gravity was not taken into account. It is shown that the developed blade design meets the requirements. Balsa wood, pine, aspen and polyurethane foam were chosen as the middle material of the blade. Pine and aspen wood were selected according to the criteria of their availability and having the lowest density. The materials library of the ANSYS WorkBench software package used does not have characteristics for all of them, so the characteristics of the selected materials (pines and aspens) were added manually. For modeling and calculations in the ANSYS WorkBench program, such characteristics as density, axial elastic modulus, Poisson's coefficients, shear modulus and tensile and compressive strength limits are required.
Damdinova T.T., Ayusheev T.V., Balzhinimaeva S.M., Abatnin A.A. —
Modeling of bodies with spherical pores by generalized linear interpolation
// Software systems and computational methods. – 2022. – ¹ 2.
– P. 42 - 51.
DOI: 10.7256/2454-0714.2022.2.38262
URL: https://en.e-notabene.ru/itmag/article_38262.html
Read the article
Abstract: The article offers a description of parametric objects with spherical pores by generalized linear interpolation. Increasing the volume of high-resolution image data requires the development of algorithms capable of processing large images with reduced computational costs. Numerical data on the geometry of the pores of the object under study are transformed into the geometry of bodies consisting of octagonal portions of cubic shape. Parametric porous objects can model both the shape and the isoparametric interior. Often, this type of parametric bodies is used as initial or boundary conditions in numerical modeling to demonstrate internal modeling. To form a body of complex shape, parametric solid-state elements can be connected together. The continuity between the elements can be determined in the same way as when modeling cubic parametric splines. A lot of research is devoted to the reconstruction of the geometric structure of porous materials based on digital images of objects for a better understanding and representation of physical processes in a porous medium. A detailed understanding of the microstructure can be used to determine physical properties, and then to evaluate and improve the characteristics of simulated objects and processes in them. The article presents the results of the proposed algorithm in the MathCAD environment and software processing of a porous body based on digital images.
Damdinova T.T., Bubeev I.T., Motoshkin P.V. —
Method of modeling a curve of the first order smoothness
// Software systems and computational methods. – 2019. – ¹ 1.
– P. 12 - 17.
DOI: 10.7256/2454-0714.2019.1.28815
URL: https://en.e-notabene.ru/itmag/article_28815.html
Read the article
Abstract: The article presents an algorithm for modeling a composite curve of the first order smoothness. The necessary formulas for determining the bypass consisting of arcs of third degree polynomials are given. The first option describes the approximation of the entire array of points with the requirement of incidence of the first and last points of the contour. The second option considers the modeling of a curve, with the requirement of incidence of the first point and the free end at the last point, using the principle of drawing curves. In the third variant, the curve must pass through the last point of the array, and at the first point it must meet the requirement of the first order of smoothness tangentially obtained in the previous step. Special points are preliminarily defined on the object - the breakpoint of the contour and points with vertical and horizontal tangents that impose smoothness conditions on the modeled bypass. To model a curve, the least-squares approximation is performed by third-degree polynomials on the set of ordered points bounded by the break points that make up the edge. The advantage of the developed contour modeling method is, firstly, the possibility of processing a large array of points with the observance of a given accuracy. Secondly, it is much easier to ensure the smoothness of the first degree of bypass compared to other methods that use various functions of connecting arcs of the bypass, and it is also important to significantly reduce the amount of data being processed, while maintaining the required specified accuracy. Further works will present the remaining options and formulas for the calculation and their application in the field of reverse engineering, in solving problems of geometric modeling in image processing.