Khimenkov A.N., Vlasov A.N., Sergeev D.O., Volkov-Bogorodskii D.B., Stanilovskaya J.V. —
Fluid dynamic geosystems in the permafrost. Part 1. Cryohydrodynamic geosystems
// Arctic and Antarctica. – 2018. – ¹ 2.
– P. 1 - 19.
DOI: 10.7256/2453-8922.2018.2.26319
URL: https://en.e-notabene.ru/arctic/article_26319.html
Read the article
Abstract: This article is devoted to the consideration of issues related to the formation of local zones with signs of dynamic metamorphism in permafrost. Data on the cryogenic formation structures with traces of plastic and discontinuous deformations, as well as signs of flow in a solid, liquid and gaseous form are analyzed. The possibility of using the fluid dynamical approach in the study of dynamic processes in the cryolithozone is considered. The development of the fluid dynamic topic necessitates consideration of non-traditional geocryological objects associated with fluid formations in the cryolithozone. The main attention is given to the structural method associated with the analysis of the features of the cryogenic formations structure and the method of actualism associated with the analysis of the conditions for the fluids formation. In the first part of the article, the paragenetic relationships between the features of the frozen soils formations on the Arctic coasts, the formation of inland water flows and the structural and texture features of the cryogenic formations are considered. A section of marine sediments in the area of the Nei-To lake in Central Yamal was chosen as the research object.
Khimenkov A.N., Vlasov A.N., Volkov-Bogorodskii D.B., Sergeev D.O., Stanilovskaya J.V. —
Fluid dynamic geosystems in the permafrost. Part 2. Cryolithodynamic and cryogaseous dynamic geosystems
// Arctic and Antarctica. – 2018. – ¹ 2.
– P. 48 - 70.
DOI: 10.7256/2453-8922.2018.2.26377
URL: https://en.e-notabene.ru/arctic/article_26377.html
Read the article
Abstract: The second part of the article is devoted to the consideration of the conditions for the development of two types of fluids in permafrost: frozen soils, and ice flows and gas flows. This work is hampered by the lack of a corresponding conceptual and terminological base, developed classifications, systematized features, differentiation of genetically distinct dynamic formations in frozen soils. In this work, the conceptual fluid dynamics terminology used in geology is analyzed and the possibility of its use in geocryology is considered. The main attention is concentrated on the construction of phenomenological models for the fluids formation in permafrost, supplemented by the structural method and by the method of actualism. The conditions for the development of various types of lithogenous fluids are analyzed: through the formation of a nucleus of rigidity, the motion of frozen soils along the slope, subaquatic landslides, and folding at the lateral surface of growing ice wedges. Based on the analysis of the structure of the gas emission crater (Yamal Crater), the possibility and conditions of gas filtration through icy frozen soils are considered. A mathematical model of the pressure filtration of gas fluids in structurally heterogeneous soils is proposed on the basis of the Brinkman equation applied to the frozen soils.