Translate this page:
Please select your language to translate the article


You can just close the window to don't translate
Library
Your profile

Back to contents

Software systems and computational methods
Reference:

Mustafaev A.G., Mustafaev G.A. Mathematical modeling and numerical calculations of resonant tunneling effect

Abstract: The research is devoted to one of the physical nanoelectronic effect – resonant tunneling. The authors provide numerical calculations for constructing the MIS-structure based diod and modeling its characteristics. The metal-oxide-silicon semiconductor in the severe depletion mode next to the doped semiconductor has a similar structure. The authors establish the MIS-structure energy band diagram, define energy levels and wave functions of an electron in the quantum well and during tunneling and calcuate the probability of tunneling based on the amounnt of the voltage applied. In the course of calculations the authors use the PTC Mathcad Prime 3.1 visual environment for mathematical modeling and technical computing. The results of the computer modeling allow to define external limit voltage including the amount of voltage that leads to the dielectric breakdown. In addition, the authors define the qualitative dependency between the MIS-structure voltage and the height and width of the energy barrier. The model developed by the authors takes into account the joint influence of several factors which is proved by the coordination of recorded current voltrage characteristic with the experimental characteristics. 


Keywords:

nanoelectronics, wave function, MIS structure, energy band diagram, quantum well, modeling, resonant tunelling diod, semiconductor device, quantum transport, quantum effect


This article can be downloaded freely in PDF format for reading. Download article


References
1. Flyugge Z. Zadachi po kvantovoy mekhanike. Tom 1. Per. s angl. M.: Mir, 1974. - 341 s.
2. Mustafaev G.A., Panchenko D.V., Panchenko V. A., Efimov M.Yu., Uyanaeva M.M. Raschet i modelirovanie urovney razmernogo kvantovaniya v strukture GaN-GaSb-GaN. Izvestiya KBGU, tom 1, ¹3, Nal'chik, 2011, s. 66-71.
3. Mustafaev G.A., Panchenko V.A., Mustafaev A.G., Panchenko D.V., Cherkesova N.V. Modelirovanie ionizatsionnykh poter' TTLSh logicheskogo elementa // Sovremennye problemy nauki i obrazovaniya. – 2015. – ¹ 1; URL: www.science-education.ru/121-19357 (data obrashcheniya: 08.10.2015).
4. Fedyay A.V., Tisnyy I.S. Modelirovanie rezonansno-tunnel'nogo dioda metodom funktsiy Eyri // N.–tekhn. sb. «Elektronika i svyaz'», tematicheskiy vypusk «Elektronika i nanotekhnologii», ch.1. – 2009. – ¹ 2-3, S. 19–21.
5. Abramov I.I., Goncharenko I.A., Kolomeytseva N.V. Kombinirovannaya model' rezonansno-tunnel'nogo dioda // Fizika i tekhnika poluprovodnikov. 2005. T. 39, vyp. 9. S. 1138-1145.
6. Ivanov Yu.A., Meshkov S.A., Sinyakin V.Yu., Fedorkova N.V., Fedorov I.B., Shashurin V.D., Fedorenko I.A. Povyshenie pokazateley kachestva radioelektronnykh sistem novogo pokoleniya za schet primeneniya rezonansno-tunnel'nykh nanodiodov // Nanoinzheneriya, 2011, ¹ 1, S. 34-43.
7. Alkeev N.V., Averin S.I., Dorofeev A.A., Gladysheva N.B., Torgashin M.Yu. Rezonansno-tunnel'nyy diod na osnove geterosistemy GaAs/ AlAs dlya subgarmonicheskogo smesitelya // Mikroelektronika. 2010. T. 39, ¹ 5. S. 356-365.