Library
|
Your profile |
Software systems and computational methods
Reference:
Golosovskiy M.S.
Model of estimation of inaccuracies in predicting the timing of software development
// Software systems and computational methods.
2015. ¹ 3.
P. 311-322.
URL: https://en.nbpublish.com/library_read_article.php?id=67274
Golosovskiy M.S. Model of estimation of inaccuracies in predicting the timing of software developmentAbstract: The subject of research is in the area of software development. An important task for this field is to accurately predict the timing of software development. However, the lack of standard set of tasks for which the execution time is predetermined or measured considerably complicates time management. Given these uncertainties, the author created a mathematical model of estimation of errors in predicting the timing of software development based on adaptive fuzzy system with an array of production rules, the antecedents and the consequent for which are represented by linguistic variables. The research methodology combines software engineering techniques and methods of fuzzy inference using fuzzy controllers based on production rules. The main result of the research is in building a model of estimation of errors in predicting the timing of software development based on fuzzy adaptive control system and the studies of its potential effectiveness. It is shown that the advantages of the developed model are: the possibility of obtaining error estimates based on expert judgment in the absence of statistical data; the possibility of adjusting the model during the project; the stability of the model to the one-time changes in the resulting noise values; the ability to transfer the model in a new project. Keywords: productional logical conclusion, evaluation of programming time, software, fuzzy controller, development time program, software development, software engineering, programming costs, complexity of the software, software development project
This article can be downloaded freely in PDF format for reading. Download article
References
1. Karatygin S.A., Dukin A.N. Otsenka srokov razrabotki programmnogo obespecheniya // Estestvennye i tekhnicheskie nauki. 2009. ¹ 4 (42). S. 350-354.
2. Golosovskiy M.S. Model' zhiznennogo tsikla razrabotki programmnogo obespecheniya v ramkakh nauchno-issledovatel'skikh rabot // Avtomatizatsiya. Sovremennye tekhnologii. 2014. ¹ 1. S. 43-46. 3. Fedorov M.V., Kalinin K.M., Bogomolov A.V., Stetsyuk A.N. Matematicheskaya model' avtomatizirovannogo kontrolya vypolneniya meropriyatiy v organakh voennogo upravleniya // Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2011. T. 9. ¹ 5. S. 46-54. 4. Golosovskiy M.S. Informatsionno-logicheskaya model' protsessa razrabotki programmnogo obespecheniya // Programmnye sistemy i vychislitel'nye metody. 2015. ¹ 1. S. 59-68. 5. Kukushkin Yu.A., Bogomolov A.V., Ushakov I.B. Matematicheskoe obespechenie otsenivaniya sostoyaniya material'nykh sistem // Informatsionnye tekhnologii. 2004. ¹ 7 (prilozhenie). 32 s. 6. Gol'fand I.Ya., Khlebutin P.S. Otsenka trudozatrat razrabotki programmnoy komponenty // Trudy ISA RAN, T.15, 2005. S. 125-135 7. Kozlov V.E., Bogomolov A.V., Rudakov S.V., Olenchenko V.T. Matematicheskoe obespechenie obrabotki reytingovoy informatsii v zadachakh ekspertnogo otsenivaniya // Mir izmereniy. 2012. ¹ 9. S. 42-49. 8. Bourque P., Fairley R.E. Guide to the Software Engineering Body of Knowledge (SWEBOK) Version 3.0. IEEE Computer Society, 2013. 335 p. 9. Shcheglov I.N., Pechatnov Yu.A., Bogomolov A.V. Intensifikatsiya razrabotki avtomatizirovannykh sistem obucheniya na osnove neyrosetevykh tekhnologiy // Informatsionnye tekhnologii. 2003. ¹ 4. S. 31. 10. Afanas'ev Yu.I. Ustoychivosti avtomatizirovannykh sistem. Kontseptsiya ustoychivogo vzaimodeystviya // Obrazovatel'nye resursy i tekhnologii. – 2014.-¹ 5(8). [Elektronnyy resurs]. URL:http://www.muiv.ru/vestnik/pdf/pp/ot_2014_5_86-94.pdf 11. Rudakov I.S., Rudakov S.V., Bogomolov A.V. Metodika identifikatsii vida zakona raspredeleniya parametrov pri provedeniya kontrolya sostoyaniya slozhnykh sistem // Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2007. T. 5. ¹ 1. S. 66-72. 12. Esev A.A., Merezhko A.N., Tkachuk A.V. Tekhnologiya kvalimetrii tekhnicheskogo urovnya slozhnykh sistem // Vestnik komp'yuternykh i informatsionnykh tekhnologiy. 2014. ¹ 7 (121). S. 28-34. 13. Iancu I. Extended Mamdani Fuzzy Logic Controller // The 4th IASTED Int. Conf. on Computational Intelligence, ACTA Press, Honolulu, USA, 2009. RR. 143–149. 14. Mann G.K.I., Bao-Gang Hu, Gosine R.G. Analysis of direct action fuzzy PID controller structures // IEEE Transactions on Systems, Man and Cybernetics, Part B. June 1999. Vol. 29. Issue 3. P. 371-388 15. Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control // IEEE Trans. Systems Man Cybernet. – 1985. – Vol. 15. – ¹ 116. – P.116–132. 16. Zadeh, L.A. A theory of approximate reasoning // Machine Intelligence. New York: John Wiley & Sons, 1979. 194 p. 17. Zade L.A. Ponyatie lingvisticheskoy peremennoy i ego primenenie k prinyatiyu priblizhennykh resheniy. M.: Mir, 1976. 165 s. 18. Uskov A.A., Kruglov V.V. Intellektual'nye sistemy upravleniya na osnove metodov nechetkoy logiki // Smolenskaya gorodskaya tipografiya, 2003. 177 s. 19. Mamdani E.H. Application of fuzzy logic to approximate reasoning using linguistic synthesis // IEEE Transactions on Computers, ¹26(12), 1977. RR 1182–1191 |