Library
|
Your profile |
History magazine - researches
Reference:
Kleshev D.S.
Pythagorean axioms of arithmetic: the historical roots of the second problem
of Hilbert
// History magazine - researches.
2011. № 5.
P. 104-114.
URL: https://en.nbpublish.com/library_read_article.php?id=58822
Kleshev D.S. Pythagorean axioms of arithmetic: the historical roots of the second problem of HilbertAbstract: the article deals with an ancient theorem of the incommensurability of side and diagonal of a square, particular attention is drawn to the axiom of the indivisibility of units (μονάς), that plays a key role in the ancient Pythagorean theory of evidence of disparate segments. Subsequent development of this theory led to the formation of the theory of irrational numbers and the theory of infinite sets of Cantor. However, in modern mathematics the continuous decimal fractions are used, which were not used in Pythagorean arithmetic. The operation of the infinite division of a unit, through which the continuous use of decimal fractions was introduced, is contrary to the axiom of indivisible units. Consequently, there is an axiomatic contradiction in the grounds of the standard of mathematics, which recognizes the validity of the Pythagorean theory of incommensurability, which led to three crises in the foundations of mathematics: ancient, associated with the discovery of incommensurable line segments, the new European associated with infinitesimal greatness, modern, getting out of which, as proved by Godel, is impossible within the framework of the standard mathematics. Keywords: history of mathematics, the Pythagorean axiom of arithmetic, irrational numbers, Brouwer L., second problem of Hilbert.
This article is unavailable for unregistered users.
Click to login or register
References
1. Istoriya matematiki s drevneyshikh vremen do nachala XIX stoletiya / Pod red. A.P.Yushkevicha. M., 1970.
2. S.Ya. Lur'e. Arkhimed. M.-L., 1945. 3. B.L. van der Varden. Probuzhdayushchayasya nauka. M., 1959. 4. Aristotel'. Sochineniya v chetyrekh tomakh / Pod red. I.D. Rozhanskogo, M., 1981, TIII. 5. R. Dekart. Pravila dlya rukovodstva uma. M.-L., 1936. 6. M. Klayn. Matematika. Utrata opredelennosti / Pod red. I.M. Yagloma. M., 1984. 7. R. Dedekind. Nepreryvnost' i irratsional'nye chisla. Odessa, 1923. 8. G. Kantor. Trudy po teorii mnozhestv / Otv. red. A.N.Kolmogorov, A.P.Yushkevich. M.,1985. 9. A. Puankare. O nauke / Pod red. L.S. Pontryagina. M., 1983. 10. V.V. Tselishchev. Filosofiya matematiki. Novosibirsk, 2002, Ch.I. 11. V.Ya. Perminov. Filosofiya i osnovaniya matematiki. M., 2001. 12. N.Ya. Vilenkin. V poiskakh beskonechnosti. M.,1983. 13. N. Burbaki. Teoriya mnozhestv / Pod red. V.A.Uspenskogo. M., 1965. 14. A.P. Stakhov. Vvedenie v algoritmicheskuyu teoriyu izmereniya. M., 1977. 15. D. Gil'bert. Matematicheskie problemy. M.,1969. 16. A.A. Zenkin. Oshibka Georga Kantora // Voprosy filosofii. 2000, №2, S.165-168 17. D.S. Kleshchev. Vozvrashchenie Orfeya. Garmoniya i disgarmoniya sovremennoy matematiki // Filosofiya i kul'tura. №5, 2009. S.21-43 18. G. Veyl'. O filosofii matematiki. M.-L., 1934 |