Translate this page:
Please select your language to translate the article


You can just close the window to don't translate
Library
Your profile

Back to contents

Law and Politics
Reference:

Tugarinova L.A., Logvinov I.G. The model of the classic prisoner’s dilemma in the game theory

Abstract: The author examines the situations, in which the interests of the sides are either directly oppose one another, or simply do not coincide. The author sees situations in which the goals are opposing, while the result of the operation depends on the actions of both sides, as conflicting, and provides a mathematical analysis of conflict situations within the framework of the game theory. The goal of this work is to make recommendations on rational choice of actions by the opposing sides in the conditions of absence of information on the behavior of the other side. The game theory is beneficial in cases when there is a need to determine factors of high importance that require consideration in situations of decision-making in the conditions of competition. The game theory can be applied in law enforcement, judicial, lawmaking and other legal fields. One of such is the classic prisoner’s dilemma, upon which the author conducts the mathematical research within the framework of the game theory. The author concludes that any process or situation, which involves two sides with opposing interests or interests that do not align, can be modeled and receive an answer in form of recommendations for optimal choice of actions of one of the sides in order to receive a better outcome.


Keywords:

Game theory, Behavior strategy, Recommendation for choice of action, Confrontation, Conflict model, Minimization of the proposed sentence, Matrix of the pair of strategies, Conflict situation, Classic prisoner’s dilemma, Probability of choice of strategy


This article can be downloaded freely in PDF format for reading. Download article


References
1. Shusherina O.A. Ekonomiko-matematicheskie metody i modeli. Uchebnoe posobie / O.A. Tugarinova, T.N.Loginovskaya, S.F. Yakovleva.-Krasnoyarsk: SibGTU, 2004.
2. Sholpo I.A. Issledovanie operatsiy. Teoriya igr-Saratov: Izd-vo Sarat. un-ta, 2008.
3. Kharshan'i Dzh., Zel'ten R. Obshchaya teoriya vybora ravnovesiya v igrakh-SPb.: Ekonomicheskaya shkola, 2009.
4. Popov A.M. Informatika i matematika dlya yuristov-M.: YuNITI-Dana, 2012-391 s.
5. Rossiyskaya gosudarstvennaya biblioteka / Tsentr inform. tekhnologiy RGB. – M. : Ros. gos. b-ka, 1998. Rezhim dostupa: http: / www.wikipedia.ru.
6. Krakhin A.V. Matematika dlya yuristov. Uchebnoe posobie – Moskva: Flinta; MPSI, 2009.
7. Zenkevich N.A., Shiryaev V.D. Igry so mnogimi uchastnikami-Saransk: Izd-vo Mordovskogo un-ta, 2011.
8. Kazantsev S.I. Informatika i matematika dlya yuristov-M.: YuNITI-DANA, 2010-463 s.
9. Germeyer Yu.B. Igry s neprotivopolozhnymi interesami-M.: Nauka, 2009.
10. Gubko M.V., Novikov D.A. Teoriya igr v upravlenii organizatsionnymi protsessami-M.: Nauka, 2005-138 s.
11. Grishentsev A.Yu., Korobeynikov A.G. Postanovka zadachi optimizatsii raspredelennykh vychislitel'nykh sistem // Programmnye sistemy i vychislitel'nye metody.-2013.-4.-C. 370-375. DOI: 10.7256/2305-6061.2013.4.10548.
12. Tkachenko O.V. Emotsional'noe sostoyanie detey v igre. // NB: Psikhologiya i psikhotekhnika. — 2013.-¹ 7.-S.1-18. DOI: 10.7256/2306-0425.2013.7.10217. URL: http://e-notabene.ru/psp/article_10217.html
13. Rozhentsov V.V., Afon'shin V.E. Tekhnologiya tekhniko-takticheskoy podgotovki v igrovykh vidakh sporta // NB: Kibernetika i programmirovanie. — 2014.-¹ 3.-S.103-109. DOI: 10.7256/2306-4196.2014.3.12048. URL: http://e-notabene.ru/kp/article_12048.html
14. Artem Gularyan. Igra v kosti: strast' dlinoyu v pyat' tysyacheletiy // Istoricheskiy zhurnal. – 2013. – ¹ 6. – S. 104-107.
15. Natal'ya Mitina. Domino: «igra zagranichnykh kofein» // Istoricheskiy zhurnal. – 2011. – ¹ 9. – S. 104-107
16. Nartsissova S.Yu., Noskov Yu.M., Krupennikov N.A., Matvienko S.V., Kondrat'ev V.S. Myshlenie kak faktor razvitiya lichnosti: modelirovanie kognitivno-stilevykh osobennostey argumentatsii // Natsional'naya bezopasnost' / nota bene. - 2013. - 5. - C. 124 - 148. DOI: 10.7256/2073-8560.2013.5.9871.
17. Grishentsev A.Yu., Korobeynikov A.G. Postanovka zadachi optimizatsii raspredelennykh vychislitel'nykh sistem // Programmnye sistemy i vychislitel'nye metody. - 2013. - 4. - C. 370 - 375. DOI: 10.7256/2305-6061.2013.4.10548.