Avtushenko A.A., Ripetskii A.V. —
Development of methodological foundations for computer-aided design and technological preparation of heat-exchange devices of electronic equipment for production by the additive technology method
// Software systems and computational methods. – 2019. – ¹ 3.
– P. 1 - 11.
DOI: 10.7256/2454-0714.2019.3.30341
URL: https://en.e-notabene.ru/itmag/article_30341.html
Read the article
Abstract: The subject of the study is the heat exchange devices using the additive technology method. For the introduction of additive technologies in the production of heat exchange devices of electronic equipment, the main stages of printing metal products on a 3D printer were determined. Due to the lack of general theoretical ideas about the orientation of the synthesized product in the camera of a 3D printer, twelve classes of overhanging surfaces are identified. In order to simplify the calculation of the volume of supports for overhanging surfaces, it is proposed to use the projection of the part at six basic positions. In general, the process of selecting the best option for basing a part based on the minimum amount of supports is presented from the following steps: selecting six basic positions; calculation of the area and height of overhanging surfaces for each base; calculation of the volume of supports for each base; comparison of the received data. As a result of the research, a general scheme was developed for the production of heat exchangers using additive technologies. When solving a scientific problem, theoretical research methods were used, based on: decomposition of problems, system analysis, methods of analytical geometry. The main conclusions of the study are the development of a methodological apparatus for automating the design of the geometric shape of heat exchangers using additive technology, based on the classification of overhanging surfaces according to geometric signs and the method of basing the product, aimed at minimizing the volume of supports. This allowed us to create algorithms that, in turn, can be grouped and translated into technological regulations for specialists in preparation for the production of complex products, both in pilot and mass production.