Iureva R.A., Timko A.S., Vedernikov K.A., Maltseva N.K. —
On the Question about Wireless Data Transfer Technology in Telediagnostic System Line Construction
// Cybernetics and programming. – 2017. – ¹ 5.
– P. 46 - 53.
DOI: 10.25136/2644-5522.2017.5.24057
URL: https://en.e-notabene.ru/kp/article_24057.html
Read the article
Abstract: The authors of the present article examine current and developing technologies of wireless data transmission used to construct telediagnostic system lines based on the example of a cyberphysical production system of Diakont. The authors describe advantages and disadvantages and evaluates efficiency of technology implementation. The rationale of the research is caused by the fact that the authors provide an analysis of prospects and challenges of implementing wireless lines which will allow to increase the speed of data transmission and diagnostic procedure remoteness from the feed end at the account of reducing the weight of a connecting cord. The analysis methods used by the authors include: theoretical analysis of current findings in the sphere of wireless connections used in cyberphysical telediagnostic systems, in particular, those that are used to control the state of pipelines. Modification of the robot for wireless data transmission is based on fixing bridges and antennas on an explosion-proof delivery system and pipe face (feed end). Modification of the eplosion-proof delivery system implies adjustment of the installation, circuit design and software. The authors emphasize the need to develop a new type of a signal conditioner lid with high-frequency connectors as well as a new antenna lid on the drivers block. Theoretically speaking, there are technologies allowing to convert to wireless data transmission inside an installation in order to perform the pipeline inspection. The main question today still remains the one about electromagnetic compatibility and noise immunity. For this purpose it is necessary to purchase equipment that would satisfy each standard in particular and to arrange tests for electromagnetic compatibility, carrying capacity, action radius, etc.
Iureva R.A., Kotel'nikov Y.P., Maltseva N.K., Vedernikov K.A. —
Study of electric drive used for moving a riding cutoff valve in a turbogenerator control system
// Electronics and Machinery. – 2017. – ¹ 3.
– P. 7 - 13.
DOI: 10.7256/2453-8884.2017.3.21960
URL: https://en.e-notabene.ru/elektronika/article_21960.html
Read the article
Abstract: Proper functioning of a turbogenerator set depends on continuous functioning of the system of regulation and protection of valves of a steam turbine. Proper functioning of a turbogenerator set is important in the case of accident threat caused by the increase of turbine rotation speed over a particular value within the operational range with insensitivity maximum 0,5% of an average operational rotation frequency. The protection of a steam turbogenerator set is guaranteed by cut-out, control and back-flow valves. By a signal of a sensor element of protection, a turbogenerator can be stopped by closing cut-out valves of a high-pressure and an intermediate pressure cylinders or their control valves and a grid valve, or simultaneous closing of the above mentioned cut-out and control units. Such a system operates on the basis of an automated system used for support of the key regulated parameters of a turbogenerator in electric load and heat load modes. The authors of the article study electro-mechanical drive used for moving a riding cutoff valve in a turbogenerator control system. The authors describe the requirements to it. Based on dynamic characteristics of the electro-mechanical drive produced by the joint company “Diakont”, the authors construct a model of a control system, which guarantees the emergency shut-down mode operation. The protection control system structure guarantees the independence of its operation from the condition of a turbogenerator control system.
Iureva R.A., Vedernikov K.A., Andreev Y.S. —
Engineering and Technological Solutions in the Process of Developing Robotlike Inspection Systems for Controlling Conduit Pipes
// Cybernetics and programming. – 2016. – ¹ 6.
– P. 56 - 63.
DOI: 10.7256/2306-4196.2016.6.20982
URL: https://en.e-notabene.ru/kp/article_20982.html
Read the article
Abstract: Intratubal diagnostics is part of a set of non-destructive control methods allowing to define internal defects of conduit pipes by the means of technical diagnosis. The main goals of intratubal diagnostics are to define defects in the conduit pipe metal, welded joints, conduit pipe geometry, types of defects, their location and position inside a conduit pipe. To achieve these tasks, a cyber physical system certain requirements set for is usually developed. The present article is devoted to a group of companies 'Diakont', one of the world leaders in the sphere of high technological solutions of security arrangements and increasing efficiency in nuclear, petroleum and thermal power industries. The purpose of the present research is to analyze engineering and technological solutions used in the process of developing a robotlike complex for intratubal diagnostics at 'Diakont' company. The rationale of the research is caused by the growing demand for cyber physical systems related to explosion safety and low cost. Thus, creation of a cyber physical system for controlling conduit pipes is a challenging task. As a result of peculiarities of the environment where intratubal diagnostics are performed, there are strict explosion safety requirements for details and parts of the diagnostic suite. Moreover, the system must have a number of engineering specifics aimed at passing shaped objects, inclined and vertical parts of conduit pipes. The authors' contribution to the topic is their analysis of existing technological solutions made in the process of developing cyber physical systems for controlling conduit pipes.