Vlasov A.A., Nekhoroshkova L.G., Shestakov A.S. —
Interprocessor interface modeling in parallel computing system with combined topology
// Cybernetics and programming. – 2014. – ¹ 4.
– P. 76 - 86.
DOI: 10.7256/2306-4196.2014.4.12606
URL: https://en.e-notabene.ru/kp/article_12606.html
Read the article
Abstract: The report reviews tasks that shall be solved during interprocessor interface modeling in parallel computing system with combined (mixed) topology based on hypercubes: binary, generalized, generalized ring, generalized ring hypercube with multiple buses. The first three of those structures can be modeled based on the last one because the algorithms of specifying their topologies are practically the same.
Modeling of the hypercube with multiple buses has its own specifics because the presence of buses considerably affects diameter, capacity and complexity of the inteprocessor interface structure, because the data can be transferred between the nodes of the structure using both direct connections and buses. As the result of this the it is important to find the optimal path for transferring data taking into account the state of closest nodes, congestion of bus (buses) linked to the current node. For that purpose a status word is formed, representing busyness of a bus and direct links of connected to the node, the state of the node itself, data acceptance, transfer or transit. To simplify selection of the direction and rout the model uses the cost of a bus. Simulation of routing and transactions are rather simple because the structure has a high degree of dimension. The main element of the modeling system is switching processor that carries out the main functions of the commutation environment.
The process of developing the modeling system has the following requirements for the designing of the software based on the iterative-incremental model using object-oriented approach and DBMS due to the need to work with large amount of data at the high speed of processing. It also requires high-level programming languages, which allows building real-time applications with features of multithreading and scalability. The project uses analytical methods of the theory of computing systems, simulation method, methodology of object-oriented design. This article discusses problems related to the study of existing and emerging types of parallel computing system topologies based on hypercubes. The novelty of the study lies in the fact that for the first time the topology of the parallel computing system based on the generalized hypercube with multiple buses is presented. The main parameters are defined, the characteristics are studied on the base of the simulation, the comparison of the parameters with the well-known hypercube topologies is given.